If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27z^2+22z=0
a = 27; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·27·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*27}=\frac{-44}{54} =-22/27 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*27}=\frac{0}{54} =0 $
| Y=15x+24 | | 53x+1=31 | | 12-6x=4x-20 | | 2x-2/5=6x-7/5 | | 6x-12=2x+46 | | a5+3=2 | | -7x+1+5x=-19 | | x+2x+1=14 | | 6(2x-1)-2=10 | | 72=-5d+7 | | X+9=5x+-11 | | 30-5x+10x=20 | | 36=x/4+13 | | 7w+27=5w(w+3) | | m-7=-32 | | 2/3e-7=11 | | 14x-1=27 | | 136-x=241 | | -2-3x+x=18 | | 3u+14=38 | | x+9=5x−11 | | X+17=2x+23 | | -3m/4+5+2m/3=-3 | | 2y+7/2=35/2 | | 5u+15=7(u+5) | | 3x+5-8x=14x | | 12-0.5x=6+0.75x | | 100.48=3.14(2)2x | | 7x+5(2-2x)+4x=44 | | x+5x+1=20 | | 2(1+4x)=4x-20 | | -2x+46=-8(x-5) |